If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2-4Y+1482
We move all terms to the left:
-(-16Y^2-4Y+1482)=0
We get rid of parentheses
16Y^2+4Y-1482=0
a = 16; b = 4; c = -1482;
Δ = b2-4ac
Δ = 42-4·16·(-1482)
Δ = 94864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{94864}=308$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-308}{2*16}=\frac{-312}{32} =-9+3/4 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+308}{2*16}=\frac{304}{32} =9+1/2 $
| 8(w+5)=80 | | 8j−-12=28 | | 8j−-12=8 | | -6b+3(b-5)=6(2-5b) | | 23=4y+2 | | -7k-2(-8-7k)=5(k+6) | | X^3/2+50p=1000,p=16 | | 1/2(4n+10)=15 | | 380−20d=160380-20d=160 | | 3x-3(7x+3)=3(1-7x)+4x | | -1-(3r-5)=-8(-8+r) | | 5x/3=10/6 | | -4K-2k=-24 | | (9x-5)(5x+6)=0 | | 1/3(6n+9)=3n+1 | | 13÷4-6x=4 | | 5(-2a+3)=95 | | -2(8p+2)-3(2-7p)=2(4+2p)= | | 25^6x+4=125 | | 3p=15p | | -6m-m=0 | | 188=-y+282 | | 17=217-u | | 6x+1=4x+29 | | -x+35=167 | | 2x/9=(3x-4)/2 | | 2x+7=-7(x+8) | | 65-4x+2=0 | | 2+2n+1=5 | | -2(v+4)=2v+24 | | 2x/9=3x-4/2 | | 18=3k+6k |